
ARM7500 Data Sheet
ARM DDI 0050C

5-1

111

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

ARM Processor Instruction Set

This chapter describes the ARM processor instruction set.

5.1 Instruction set summary 5-2

5.2 The condition field 5-3

5.3 Branch and branch with link (B, BL) 5-4

5.4 Data processing 5-6

5.5 PSR transfer (MRS, MSR) 5-15

5.6 Multiply and multiply-accumulate (MUL, MLA) 5-20

5.7 Single data transfer (LDR, STR) 5-23

5.8 Block data transfer (LDM, STM) 5-29

5.10 Software interrupt (SWI) 5-39

5.11 Coprocessor Instructions on the ARM Processor 5-41

5.13 Coprocessor data transfers (LDC, STC) 5-44

5.14 Coprocessor register transfers (MRC, MCR) 5-48

5.15 Undefined instruction 5-51

5.16 Instruction set examples 5-52

5.16 Instruction set examples 5-52

5

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-2

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.1 Instruction set summary
A summary of the ARM processor instruction set is shown in ➲Figure 5-1: Instruction
set summary.

Note: Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a Multiply instruction with bit 6 changed to a 1. These
instructions shall not be used, as their action may change in future ARM
implementations.

 Figure 5-1: Instruction set summary

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register T ransfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-3

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.2 The condition field

 Figure 5-2: Condition codes

All ARM processor instructions are conditionally executed, which means that their
execution may or may not take place depending on the values of the N, Z, C and V
flags in the CPSR.

The condition codes have meanings as detailed in ➲Figure 5-2: Condition codes, for
instance code 0000 (EQual) executes the instruction only if the Z flag is set. This would
correspond to the case where a compare (CMP) instruction had found the two
operands to be equal. If the two operands were different, the compare instruction
would have cleared the Z flag and the instruction is not executed.

Note: If the always (AL - 1110) condition is specified, the instruction will be executed
irrespective of the flags. The never (NV - 1111) class of condition codes must not be
used as they will be redefined in future variants of the ARM architecture. If a NOP is
required it is suggested that MOV R0,R0 be used. The assembler treats the absence
of a condition code as though always had been specified.

Cond

31 28 27 0

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - always
1111 = NV - never

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-4

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.3 Branch and branch with link (B, BL)
These instructions are only executed if the condition is true. The instruction encoding
is shown in ➲Figure 5-3: Branch instructions.

Branch instructions contain a signed 2's complement 24-bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore
specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

 Figure 5-3: Branch instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a branch with link type operation is required.

5.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
The PC value written into R14 is adjusted to allow for the prefetch, and contains the
address of the instruction following the branch and link instruction. Note that the CPSR
is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register
is still valid or use LDM Rn!,{..PC} if the link register has been saved onto a stack
pointed to by Rn.

5.3.2 Instruction cycle times

Branch and Branch with Link instructions take 3 instruction fetches. For more
information see ➲5.16.7 Instruction speed summary on page 5-55.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-5

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.3.3 Assembler syntax

B{L}{cond} <expression>

Items in {} are optional. Items in <> must be present.

{L} requests the Branch with Link form of the instruction. If
absent, R14 will not be affected by the instruction.

{cond} is a two-char mnemonic as shown in ➲Figure 5-2: Condition
codes on page 5-3 (EQ, NE, VS etc). If absent then AL
(ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

5.3.4 Examples

here BAL here ;assembles to 0xEAFFFFFE (note effect of PC
;offset)

B there ;ALways condition used as default
CMP R1,#0 ;compare R1 with zero and branch to fred if R1
BEQ fred ;was zero otherwise continue to next instruction
BL sub+ROM ;call subroutine at computed address
ADDS R1,#1 ;add 1 to register 1, setting CPSR flags on the
BLCC sub ;result then call subroutine if the C flag is

;clear, which will be the case unless R1 held
;0xFFFFFFFF

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-6

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.4 Data processing
The instruction is only executed if the condition is true, defined at the beginning of this
chapter. The instruction encoding is shown in ➲Figure 5-4: Data processing
instructions on page 5-7.

The instruction produces a result by performing a specified arithmetic or logical
operation on one or two operands.

First operand is always a register (Rn).

Second operand may be a shifted register (Rm) or a rotated 8-bit immediate
value (Imm) according to the value of the I bit in the
instruction.

The condition codes in the CPSR may be preserved or updated as a result of this
instruction, according to the value of the S-bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used
only to perform tests and to set the condition codes on the result and always have the
S bit set.

The instructions and their effects are listed in ➲Table 5-1: ARM data processing
instructions on page 5-8.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-7

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

.

 Figure 5-4: Data processing instructions

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register
1st operand register
Set condition codes

Operation Code

0 = do not alter condition codes
1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C
0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register
shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1
- 1

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-8

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical
operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action
on all corresponding bits of the operand or operands to produce the result.

If the S bit is set (and Rd is not R15):

• the V flag in the CPSR will be unaffected

• the C flag will be set to the carry out from the barrel shifter (or preserved when
the shift operation is LSL #0)

• the Z flag will be set if and only if the result is all zeros

• the N flag will be set to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32-bit integer (either unsigned or 2’s complement signed, the two are
equivalent).

Assembler
mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

 Table 5-1: ARM data processing instructions

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-9

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

If the S bit is set (and Rd is not R15):

• the V flag in the CPSR will be set if an overflow occurs into bit 31 of the result;
this may be ignored if the operands were considered unsigned, but warns of
a possible error if the operands were 2's complement signed

• the C flag will be set to the carry out of bit 31 of the ALU

• the Z flag will be set if and only if the result was zero

• the N flag will be set to the value of bit 31 of the result (indicating a negative
result if the operands are considered to be 2's complement signed).

5.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the
barrel shifter is controlled by the Shift field in the instruction. This field indicates the
type of shift to be performed (logical left or right, arithmetic right or rotate right).
The amount by which the register should be shifted may be contained in an immediate
field in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in ➲Figure 5-5: ARM shift operations.

 Figure 5-5: ARM shift operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and
moves each bit by the specified amount to a more significant position. The least
significant bits of the result are filled with zeros, and the high bits of Rm which do not
map into the result are discarded, except that the least significant discarded bit
becomes the shifter carry output which may be latched into the C bit of the CPSR when
the ALU operation is in the logical class (see above). For example, the effect of LSL #5
is shown in ➲Figure 5-6: Logical shift left on page 5-10.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-10

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

 Figure 5-6: Logical shift left

Note: LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C
flag. The contents of Rm are used directly as the second operand.

Logical shift right

A logical shift right (LSR) is similar, but the contents of Rm are moved to less
significant positions in the result. LSR #5 has the effect shown in ➲Figure 5-7: Logical
shift right.

 Figure 5-7: Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift left zero, so the assembler
will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

Arithmetic shift

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits
are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement
notation. For example, ASR #5 is shown in ➲Figure 5-8: Arithmetic shift right.

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-11

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

 Figure 5-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros used
to fill the high end in logical right operations. For example, ROR #5 is shown in ➲Figure
5-9: Rotate right on page 5-11.

 Figure 5-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33 bit quantity formed by appending the CPSR C flag to the
most significant end of the contents of Rm as shown in ➲Figure 5-10: Rotate right
extended.

contents of Rm

value of operand 2

31 0

carry out

5 430

contents of Rm

value of operand 2

31 0

carry out

5 4

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-12

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

 Figure 5-10: Rotate right extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount. Rs can be any general register other than R15.

Note: The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one
in this bit will cause the instruction to be a multiply or undefined instruction.

5.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift
operation on the 8 bit immediate value. This value is zero extended to 32 bits, and then
subject to a rotate right by twice the value in the rotate field. This enables many
common constants to be generated, for example all powers of 2.

Byte Description

0 Unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output

1 - 31 The shifted result will exactly match that of an instruction specified shift with the same
value and shift operation

32 or more The result will be a logical extension of the shift described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out as ROR
by n-32; therefore repeatedly subtract 32 from n until the amount is in the range
1 to 32 and see above.

 Table 5-2: Register specified shift amount

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-13

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR.

Note: This form of instruction must not be used in User mode.

5.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

5.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler shall always set the S flag for these instructions even if it is not
specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the
32-bit modes, the PSR transfer operations should be used instead. If used in these
modes, its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

5.4.7 Instruction cycle times

Data Processing instructions vary in the number of incremental cycles taken as
follows:

See ➲5.16.7 Instruction speed summary on page 5-55 for more information.

Instruction Cycles

Normal Data Processing 1instruction fetch

Data Processing with register specified shift 1 instruction fetch + 1 internal cycle

Data Processing with PC written 3 instruction fetches

Data Processing with register specified shift
and PC written

3 instruction fetches and 1 internal cycle

 Figure 5-11: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-14

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.4.8 Assembler syntax

1 MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

2 CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> is Rm{,<shift>} or,<#expression>

{cond} two-character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

{S} set condition codes if S present (implied for CMP, CMN, TEQ,
TST).

Rd, Rn and Rm are expressions evaluating to a register number.

<#expression> if used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or
RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL;
they assemble to the same code.)

5.4.9 Example

ADDEQ R2,R4,R5 ;if the Z flag is set make R2:=R4+R
TEQS R4,#3 ;test R4 for equality with 3

;(the S is in fact redundant as the
;assembler inserts it automatically)

SUB R4,R5,R7,LSR R2;
;logical right shift R7 by the number in
;the bottom byte of R2, subtract result
;from R5, and put the answer into R4

MOV PC,R14 ;return from subroutine
MOVS PC,R14 ;return from exception and restore CPSR

;from SPSR_mode

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-15

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.5 PSR transfer (MRS, MSR)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲5.2 The condition field on page 5-3.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in ➲Figure 5-12: PSR transfer on page
5-16.

These instructions allow access to the CPSR and SPSR registers. The MRS
instruction allows the contents of the CPSR or SPSR_<mode> to be moved to a
general register.

The MSR instruction allows the contents of a general register to be moved to the
CPSR or SPSR_<mode> register. The MSR instruction also allows an immediate
value or register contents to be transferred to the condition code flags (N,Z,C and V)
of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four
bits of the specified register contents or 32-bit immediate value are written to the top
four bits of the relevant PSR.

5.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the
entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution.
For example, only SPSR_fiq is accessible when the processor is in FIQ mode.

Note: R15 must not be specified as the source or destination register.

A further restriction is that you must not attempt to access an SPSR in User mode,
since no such register exists.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-16

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

 Figure 5-12: PSR transfer

Cond

01112151621272831

Condition field

P

2223

0 = CPSR
1 = SPSR_<current mode>

00010 000000000000s 001111 Rd

Destination register

Source PSR

Condition field

MRS

021272831 2223

MSR

RmPdCond 00010

4 3

Condition field

272831 2223

MSR

PdCond

1010011111 00000000

12 11

Source register

21 12

101000111100 I 10

011

Source operand

Immediate Operand

Rm

Rotate

Unsigned 8 bit immediate value

shift applied to Imm

Imm

11 8 7 0

03411

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

0 = Source operand is a register

1 = Source operand is an immediate value

00000000

Source register

(transfer PSR contents to a register)

(transfer register contents to PSR)

(transfer register contents or immediate value to PSR flag bits only)

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-17

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.5.2 Reserved bits

Only eleven bits of the PSR are defined in the ARM processor (N,Z,C,V,I,F & M[4:0]);
the remaining bits (= PSR[27:8,5]) are reserved for use in future versions of the
processor.

Compatibility

To ensure the maximum compatibility between ARM processor programs and future
processors, the following rules should be observed:

1 The reserved bit smust be preserved when changing the value in a PSR.

2 Programs must not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future
processors.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register; this involves transferring the appropriate PSR register to a general
register using the MRS instruction, changing only the relevant bits and then
transferring the modified value back to the PSR register using the MSR instruction.

For example, the following sequence performs a mode change:

MRS R0,CPSR ;take a copy of the CPSR
BIC R0,R0,#0x1F ;clear the mode bits
ORR R0,R0,#new_mode ;select new mode
MSR CPSR,R0 ;write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. e.g. The following
instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#0xF0000000
;set all the flags regardless of
;their previous state (does not
;affect any control bits)

Note: Do not attempt to write an 8 bit immediate value into the whole PSR since such an
operation cannot preserve the reserved bits.

5.5.3 Instruction cycle times

PSR Transfers take 1 instruction fetch. For more information see ➲5.16.7 Instruction
speed summary on page 5-55.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-18

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.5.4 Assembler syntax

1 MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2 MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

3 MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C
& V flags respectively.

4 MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32-bit value of which the most significant
four bits are written to the N,Z,C & V flags respectively.

where:

{cond} two-character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

Rd and Rm are expressions evaluating to a register number other than
R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and
CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

<#expression> where used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-19

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ;CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ;CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000;

;CPSR[31:28] <- 0xA
;(i.e. set N,C; clear Z,V)

MRS Rd,CPSR ;Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ;CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ;CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000;

;CPSR[31:28] <- 0x5
;(i.e. set Z,V; clear N,C)

MRS Rd,CPSR ;Rd[31:0] <- CPSR[31:0]
MSR SPSR_all,Rm ;SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ;SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000;

;SPSR_<mode>[31:28] <- 0xC
;(i.e. set N,Z; clear C,V)

MRS Rd,SPSR ;Rd[31:0] <- SPSR_<mode>[31:0]

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-20

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.6 Multiply and multiply-accumulate (MUL, MLA)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
➲Figure 5-13: Multiply instructions.

The multiply and multiply-accumulate instructions use a 2-bit Booth’s algorithm to
perform integer multiplication. They give the least significant 32-bits of the product of
two 32-bit operands, and may be used to synthesize higher-precision multiplications.

 Figure 5-13: Multiply instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be
set to zero for compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD
instruction in some circumstances.

The results of a signed multiply and of an unsigned multiply of 32-bit operands differ
only in the upper 32 bits; the low 32 bits of the signed and unsigned results are
identical. As these instructions only produce the low 32 bits of a multiply, they can be
used for both signed and unsigned multiplies.

Example

For example consider the multiplication of the operands:

Operand A Operand B Result
0xFFFFFFF6 0x00000014 0xFFFFFF38

If the operands are interpreted as signed, operand A has the value -10, operand B has
the value 20, and the result is -200 which is correctly represented as 0xFFFFFF38

If the operands are interpreted as unsigned, operand A has the value 4294967286,
operand B has the value 20 and the result is 85899345720, which is represented as
0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-21

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.6.1 Operand restrictions

Due to the way multiplication was implemented in other ARM processors, certain
combinations of operand registers should be avoided. The ARM processor’s
advanced multiplier can handle all operand combinations but by observing these
restrictions code written for the ARM processor will be more compatible with other
ARM processors. (The assembler will issue a warning if these restrictions are
overlooked.)

Note: The destination register Rd must not be the same as the operand register Rm. R15
shall not be used as an operand or as the destination register. All other register
combinations will give correct results, and Rd, Rn and Rs may use the same register
when required.

5.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction.
The N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to
bit 31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is
set to a meaningless value and the V (oVerflow) flag is unaffected.

5.6.3 Instruction cycle times

The Multiply instructions take 1 instruction fetch and m internal cycles, as shown in
➲Table 5-3: Instruction cycle times. For more information see ➲5.16.7 Instruction
speed summary on page 5-55..

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs

The maximum time for any multiply is thus 1S+16I cycles.

Multiplication by Takes

any number between 2^(2m-3) and 2^(2m-1)-1 1S+mI cycles for 1<m>16.

Multiplication by 0 or 1 1S+1I cycles

any number greater than or equal to 2^(29) 1S+16I cycles.

 Table 5-3: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-22

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

where:

{cond} two-character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

{S} set condition codes if S present

Rd, Rm, Rs, Rn are expressions evaluating to a register number other
than R15.

5.6.5 Examples

MUL R1,R2,R3 ;R1:=R2*R3
MLAEQS R1,R2,R3,R4 ;conditionally

;R1:=R2*R3+R4,
;setting condition codes

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-23

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.7 Single data transfer (LDR, STR)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-14: Single data transfer instructions.

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register.

The result of this calculation may be written back into the base register if
’auto-indexing' is required.

 Figure 5-14: Single data transfer instructions

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-24

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.7.1 Offsets and auto-indexing

The offset from the base may be either a 12-bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may be
added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification
may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes.
The modified base value may be written back into the base (W=1), or the old base
value may be kept (W=0).

Post-indexed addressing

In the case of post-indexed addressing, the write back bit is redundant and is always
set to zero, since the old base value can be retained by setting the offset to zero.
Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where
setting the W bit forces non-privileged mode for the transfer, allowing the operating
system to generate a user address in a system where the memory management
hardware makes suitable use of this hardware.

5.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction class.
See ➲5.4.2 Shifts on page 5-9.

5.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM processor register and memory. The following text assumes that the
ARM7500 is operating with 32-bit wide memory. If it is operating with 16-bit wide
memory, the positions of bytes on the external data bus will be different, although, on
the ARM7500 internal data bus the positions will be as described here.

The action of LDR(B) and STR(B) instructions is influenced by the 3 instruction
fetches. For more information see ➲5.16.7 Instruction speed summary on page 5-55.
The two possible configurations are described below.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-25

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

Little Endian Configuration

Byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. See ➲Figure 4-1: Little Endian addresses of
bytes within words on page 4-2.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0.

Word load (LDR) will normally use a word aligned address. However, an
address offset from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that half-words accessed at offsets 0
and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in ➲Figure 5-15: Little Endian offset addressing on
page 5-25.

A word store (STR) should generate a word aligned address.
The word presented to the data bus is not affected if the
address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

 Figure 5-15: Little Endian offset addressing

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-26

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

Big Endian Configuration

Byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are
filled with zeros. Please see ➲Figure 4-2: Big Endian
addresses of bytes within words on page 4-3.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0.

Word load (LDR) should generate a word aligned address. An address offset of
0 or 2 from a word boundary will cause the data to be rotated
into the register so that the addressed byte occupies bits 31
through 24. This means that half-words accessed at these
offsets will be correctly loaded into bits 16 through 31 of the
register. A shift operation is then required to move (and
optionally sign extend) the data into the bottom 16 bits. An
address offset of 1 or 3 from a word boundary will cause the
data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address.
The word presented to the data bus is not affected if the
address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

5.7.4 Use of R15

Do not specify write-back if R15 is specified as the base register (Rn). When using R15
as the base register you must remember it contains an address 8 bytes on from the
address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be address of the instruction plus 12.

5.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as
the base register, Rn, gets updated before the abort handler starts. Sometimes it may
be impossible to calculate the initial value.

For example:

LDR R0,[R1],R1
<LDR|STR> Rd, [Rn],{+/-}Rn{,<shift>}

Therefore a post-indexed LDR|STR where Rm is the same register as Rn shall not be
used.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-27

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.7.6 Data aborts

A transfer to or from a legal address may cause the MMU to generate an abort. It is
up to the system software to resolve the cause of the problem, then the instruction can
be restarted and the original program continued.

5.7.7 Instruction cycle times

For more information see ➲5.16.7 Instruction speed summary on page 5-55.

5.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of
index register, shifted by
<shift>

Instruction Cycles

Normal LDR instruction 1 instruction fetch, 1 data read and 1 internal cycle

LDR PC 3 instruction fetches, 1 data read and 1 internal cycle.

STR instruction 1 instruction fetch and 1 data write incremental cycles.

 Table 5-4: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-28

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of
index register, shifted as
by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15
then the assembler will subtract 8 from the offset value to
allow for ARM7500 pipelining. In this case base write-back
shall not be specified.

<shift> is a general shift operation (see section on data processing
instructions) but note that the shift amount may not be
specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

5.7.9 Examples

STR R1,[R2,R4]! ;store R1 at R2+R4 (both of which are
;registers) and write back address to R2

STR R1,[R2],R4 ;store R1 at R2 and write back
;R2+R4 to R2

LDR R1,[R2,#16] ;load R1 from contents of R2+16
; Don't write back

LDR R1,[R2,R3,LSL#2]
;load R1 from contents of R2+R3*4

LDREQB
R1,[R6,#5] ;conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31
; with zeros

STR R1,PLACE ;generate PC relative offset to address
• ;PLACE
•

PLACE

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-29

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.8 Block data transfer (LDM, STM)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-16: Block data transfer instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

5.8.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16 bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

 Figure 5-16: Block data transfer instructions

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-30

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.8.2 Addressing modes

The transfer addresses are determined by :

• the contents of the base register (Rn)

• the pre/post bit (P)

• the up/down bit (U)

The registers are transferred in the order lowest to highest, so R15 (if in the list) will
always be transferred last. The lowest register also gets transferred to/from the lowest
memory address.

By way of illustration, consider the transfer of R1, R5 and R7 in the case where
Rn=0x1000 and write back of the modified base is required (W=1).

➲Figure 5-17: Post-increment addressing, ➲Figure 5-18: Pre-increment addressing,
➲Figure 5-19: Post-decrement addressing, and ➲Figure 5-20: Pre-decrement
addressing on page 5-32, show the sequence of register transfers, the addresses
used, and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 0x1000 unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.

5.8.3 Address alignment

The address should always be a word aligned quantity.

 Figure 5-17: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-31

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d Figure 5-18: Pre-increment addressing

 Figure 5-19: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-32

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

 Figure 5-20: Pre-decrement addressing

5.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not
R15 is in the transfer list and on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back shall not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather
than the register bank corresponding to the current mode. This is useful for saving the
user state on process switches. Base write-back shall not be used when this
mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a NOP after the LDM will ensure safety).

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-33

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.8.5 Use of R15 as the base register

R15 must not be used as the base register in any LDM or STM instruction.

5.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle
of the instruction. During an STM, the first register is written out at the start of the
second cycle. An STM which includes storing the base, with the base as the first
register to be stored, will therefore store the unchanged value, whereas with the base
second or later in the transfer order, will store the modified value. An LDM will always
overwrite the updated base if the base is in the list.

5.8.7 Data aborts

Some legal addresses may be unacceptable to the MMU. The MMU will then cause
an abort. This can happen on any transfer during a multiple register load or store, and
must be recoverable if ARM7500 is to be used in a virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, the ARM processor takes little
action until the instruction completes, whereupon it enters the data abort trap. The
memory manager is responsible for preventing erroneous writes to the memory. The
only change to the internal state of the processor will be the modification of the base
register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When the ARM processor detects a data abort during a load multiple instruction, it
modifies the operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved.

2 The base register is restored, to its modified value if write-back was
requested. This ensures recoverability in the case where the base register is
also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-34

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.8.8 Instruction cycle times

For more information see ➲5.16.7 Instruction speed summary on page 5-55.

5.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} - two character condition mnemonic, see ➲Figure 5-2: Condition codes on page
5-3

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force transfer of user
bank when in privileged mode

Instruction Cycles

Normal LDM instructions 1 instruction fetch, n data reads and 1 internal cycle

LDM PC 3 instruction fetches, n data reads and 1 internal cycle.

STM instructions instruction fetch, n data reads and 1 internal cycle, where n is the
number of words transferred.

 Table 5-5: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-35

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.8.10 Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. The equivalencies between the names and the values of the bits in the
instruction are shown in ➲Table 5-6: Addressing mode names:

Key to table

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required.

F Full stack (a pre-index has to be done before storing to the stack)

E Empty stack

A The stack is ascending (an STM will go up and LDM down)

D The stack is decending (an STM will go down and LDM up)

The following symbols allow control when LDM/STM are not being used for stacks:

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

Name Stack Other L-bit P-bit U-bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 5-6: Addressing mode names

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-36

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.8.11 Examples

LDMFD SP!,{R0,R1,R2} ;unstack 3 registers
STMIA R0,{R0-R15} ;save all registers
LDMFD SP!,{R15} ;R15 <- (SP),CPSR unchanged
LDMFD SP!,{R15}^ ;R15 <- (SP), CPSR <- SPSR_mode (allowed

;only in privileged modes)
STMFD R13,{R0-R14}^ ;save user mode regs on stack (allowed

;only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14};
;save R0 to R3 to use as workspace
;and R14 for returning

BL somewhere ;this nested call will overwrite R14
LDMED SP!,{R0-R3,R15}

;restore workspace and return

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-37

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.9 Single data swap (SWP)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-21: Swap instruction.

 Figure 5-21: Swap instruction

Data swap instruction

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. This instruction is implemented as a memory read followed by
a memory write which are “locked” together (the processor cannot be interrupted until
both operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.

Swap address

The swap address is determined by the contents of the base register (Rn). The
processor first read the contents of the swap address. Then it writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register can be specified as both the source
and the destination.

ARM710 lock feature

The ARM7500 does not use the lock feature available in the ARM710 macrocell. You
must take care to ensure that control of the memory is not removed from the ARM
processor while it is performing this instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-38

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM processor register and memory. The SWP instruction is implemented as a LDR
followed by a STR and the action of these is as described in the section on single data
transfers. In particular, the description of Big and Little Endian configuration applies to
the SWP instruction.

5.9.2 Use of R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

5.9.3 Data aborts

If the address used for the swap is unacceptable to the MMU, it will cause an abort.
This can happen on either the read or write cycle (or both), and, in either case, the
Data Abort trap will be taken. It is up to the system software to resolve the cause of
the problem. The instruction can then be restarted and the original program continued.

5.9.4 Instruction cycle times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal
cycle. For more information see ➲5.16.7 Instruction speed summary on page 5-55.

5.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

{B} if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

5.9.6 Examples

SWP R0,R1,[R2] ;load R0 with the word addressed by R2, and
;store R1 at R2

SWPB R2,R3,[R4] ;load R2 with the byte addressed by R4, and
;store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ;conditionally swap the contents of R1
;with R0

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-39

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.10 Software interrupt (SWI)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-22: Software interrupt instruction. The software interrupt instruction is used to enter
Supervisor mode in a controlled manner. The instruction causes the software interrupt
trap to be taken, which effects the mode change. The PC is then forced to a fixed value
(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably
protected (by external memory management hardware) from modification by the user,
a fully protected operating system may be constructed.

 Figure 5-22: Software interrupt instruction

5.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return
to the calling program and restore the CPSR.

Note: The link mechanism is not re-entrant, so if the supervisor code wishes to use software
interrupts within itself it must first save a copy of the return address and SPSR.

5.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions.

5.10.3 Instruction cycle times

Software interrupt instructions take 3 instruction fetches. For more information see
➲5.16.7 Instruction speed summary on page 5-55.

5.10.4 Assembler syntax

SWI{cond} <expression>

{cond} two character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

<expression> is evaluated and placed in the comment field (ignored by the
ARM processor).

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-40

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.10.5 Examples

SWI ReadC ;get next character from read stream
SWI WriteI+”k” ;output a “k” to the write stream
SWINE 0 ;conditionally call supervisor

;with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ;SWI entry point

EntryTable ;addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
...

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor

;SWI has routine required in bits 8-23 and data (if any) in bits
;0-7.
;Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and return address
LDR R0,[R14,#-4] ;get SWI instruction
BIC R0,R0,#0xFF000000;

;clear top 8 bits
MOV R1,R0,LSR#8 ;get routine offset
ADR R2,EntryTable ;get start address of entry table
LDR R15,[R2,R1,LSL#2];

;branch to appropriate routine

WriteIRtn ;enter with character in R0 bits 0-7
.

LDMFD R13,{R0-R2,R15}^;
;restore workspace and return
; restoring processor mode and flags

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-41

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.11 Coprocessor Instructions on the ARM Processor
The core ARM processor in the ARM7500, unlike some other ARM processors, does
not have an external coprocessor interface. It only supports a single on-chip
coprocessor, #15, which is used to program the on-chip control registers. This only
supports the Coprocessor Register Transfer instructions (MRC and MCR).

All other coprocessor instructions will cause the undefined instruction trap to be taken
on the ARM processor. These coprocessor instructions can be emulated in software
by the undefined trap handler. Even though external coprocessors cannot be
connected to the ARM processor, the coprocessor instructions are still described here
in full for completeness. It must be kept in mind that any external coprocessor referred
to will be a software emulation.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-42

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.12 Coprocessor data operations (CDP)
Use of the CDP instruction on the ARM processor will cause an undefined instruction
trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-23: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to the processor, and it will not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other activity allowing the
coprocessor and the processor to perform independent tasks in parallel.

 Figure 5-23: Coprocessor data operation instruction

5.12.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor; the remaining bits are used
by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its
number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

5.12.2 Instruction cycle times

All CDP instructions are emulated in software: the number of cycles taken will depend
on the coprocessor support software.

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-43

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present, is evaluated to a constant and placed in the
CP field

5.12.4 Examples

CDP p1,10,c1,c2,c3 ;request coproc 1 to do operation 10
;on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2;
;if Z flag is set request coproc 2 to do
;operation 5 (type 2) on CR2 and CR3,
;and put the result in CR1

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-44

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.13 Coprocessor data transfers (LDC, STC)
Use of the LDC or STC instruction on the ARM processor will cause an undefined
instruction trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-24: Coprocessor data transfer instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. The processor is responsible for
supplying the memory address, and the coprocessor supplies or accepts the data and
controls the number of words transferred.

 Figure 5-24: Coprocessor data transfer instructions

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-45

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.13.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be
transferred), and the N bit is used to choose one of two transfer length options.

For example:

N=0 could select the transfer of a single register

N=1 could select the transfer of all the registers for context switching.

5.13.2 Addressing modes

The processor is responsible for providing the address used by the memory system
for the transfer, and the addressing modes available are a subset of those used in
single data transfer instructions. Note, however, that the immediate offsets are 8 bits
wide and specify word offsets for coprocessor data transfers, whereas they are 12 bits
wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0).

Note: Post-indexed addressing modes require explicit setting of the W bit, unlike LDR and
STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each
subsequent transfer.

5.13.3 Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

5.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 must not be specified.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-46

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.13.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will
be taken. The write-back of the modified base will take place, but all other processor
state will be preserved. The coprocessor is partly responsible for ensuring that the
data transfer can be restarted after the cause of the abort has been resolved, and must
ensure that any subsequent actions it undertakes can be repeated when the
instruction is retried.

5.13.6 Instruction cycle times

All LDC instructions are emulated in software: the number of cycles taken will depend
on the coprocessor support software.

5.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

p# the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor register number
that is placed in the CRd field

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid processor register number.
Note, if Rn is R15 then the assembler will subtract 8 from the offset
value to allow for processor pipelining.

{!} write back the base register (set the W bit) if ! is present

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-47

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.13.8 Examples

LDC p1,c2,table ;load c2 of coproc 1 from address table,
;using a PC relative address.

STCEQLp2,c3,[R5,#24]! ;conditionally store c3 of coproc 2
;into an address 24 bytes up from R5,
;write this address back to R5, and use
;long transfer
;option (probably to store multiple
;words)

Note: Though the address offset is expressed in bytes, the instruction offset field is in words.
The assembler will adjust the offset appropriately.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-48

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.14 Coprocessor register transfers (MRC, MCR)
Use of the MRC or MCR instruction on the ARM processor to a coprocessor other than
number 15 will cause an undefined instruction trap to be taken, which may be used to
emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-25: Coprocessor register transfer instructions.

This class of instruction is used to communicate information directly between the ARM
processor and a coprocessor. An example of a coprocessor to processor register
transfer (MRC) instruction would be a FIX of a floating point value held in a
coprocessor, where the floating point number is converted into a 32-bit integer within
the coprocessor, and the result is then transferred to a processor register. A FLOAT of
a 32-bit value in a processor register into a floating point value within the coprocessor
illustrates the use of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the processor CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

Note: The ARM processor has an internal coprocessor (#15) for control of on-chip functions.
Accesses to this coprocessor are performed during coprocessor register transfers.

 Figure 5-25: Coprocessor register transfer instructions

5.14.1 The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon.

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-49

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other interpretations
are allowed where the coprocessor functionality is incompatible with this one. The
conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the
source or destination of the transferred information, and CRm is a second coprocessor
register which may be involved in some way which depends on the particular operation
specified.

5.14.2 Transfers to R15

When a coprocessor register transfer to the ARM processor has R15 as the
destination, bits 31, 30, 29 and 28 of the transferred word are copied into the N, Z, C
and V flags respectively. The other bits of the transferred word are ignored, and the
PC and other CPSR bits are unaffected by the transfer.

5.14.3 Transfers from R15

A coprocessor register transfer from the ARM processor with R15 as the source
register will store the PC+12.

5.14.4 Instruction cycle times

Access to the internal configuration register takes 3 internal cycles. All other MRC
instructions default to software emulation, and the number of cycles taken will depend
on the coprocessor support software.

5.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC - move from coprocessor to ARM7500 register (L=1)

MCR - move from ARM7500 register to coprocessor (L=0)

{cond} - two character condition mnemonic, see ➲Figure 5-2: Condition codes on page
5-3

p# - the unique number of the required coprocessor

<expression1> - evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM processor register number

cn and cm are expressions evaluating to the valid coprocessor register numbers CRn
and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-50

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.14.6 Examples

MRC 2,5,R3,c5,c6 ;request coproc 2 to perform operation 5
;on c5 and c6, and transfer the (single
;32-bit word) result back to R3

MCR 6,0,R4,c6 ;request coproc 6 to perform operation 0
;on R4 and place the result in c6

MRCEQ 3,9,R3,c5,c6,2 ;conditionally request coproc 2 to
;perform
;operation 9 (type 2) on c5 and c6, and
;transfer the result back to R3

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-51

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.15 Undefined instruction

 Figure 5-26: Undefined instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction format is shown in ➲Figure 5-
26: Undefined instruction on page 5-51.

If the condition is true, the undefined instruction trap will be taken.

5.15.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is
adopted in the future for some specified use, suitable mnemonics will be added to the
assembler. Until such time, this instruction shall not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-52

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.16 Instruction set examples
The following examples show ways in which the basic ARM processor instructions can
combine to give efficient code. None of these methods saves a great deal of execution
time (although they may save some), mostly they just save code.

5.16.1 Using the conditional instructions

1 using conditionals for logical OR

CMP Rn,#p ;if Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by
CMP Rn,#p
CMPNE Rm,#q ;if condition not satisfied try other

;test
BEQ Label

2 absolute value

TEQ Rn,#0 ;test sign
RSBMI Rn,Rn,#0 ;and 2's complement if necessary

3 multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2;
;multiply by 4

CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

4 combining discrete and range tests

TEQ Rc,#127 ;discrete test
CMPNE Rc,#” “-1;

;range test
MOVLS Rc,#”.” ;IF Rc<=” “ OR Rc=ASCII(127)

;THEN Rc:=”.”

5 division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier. A short general purpose divide routine follows.

;enter with numbers in Ra and Rb
;

MOV Rcnt,#1 ;bit to control the division
Div1 CMP Rb,#0x80000000;

;move Rb until greater than Ra
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-53

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ;test for possible subtraction
SUBCS Ra,Ra,Rb ;subtract if ok
ADDCS Rc,Rc,Rcnt;

;put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1;

;shift control bit
MOVNE Rb,Rb,LSR#1;

;halve unless finished
BNE Div2

;
;divide result in Rc
;remainder in Ra

5.16.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator
needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before
repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 or bit 20, shift left the 33-bit number and put in newbit at the
bottom; this operation is performed for all the newbits needed (i.e. 32 bits). The entire
operation can be done in 5 S cycles:

;enter with seed in Ra (32 bits),
;Rb (1 bit in Rb lsb), uses Rc
;

TST Rb,Rb,LSR#1 ;top bit into carry
MOVS Rc,Ra,RRX ;33 bit rotate right
ADC Rb,Rb,Rb ;carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12;

;(involved!)
EOR Ra,Rc,Rc,LSR#20;

;(similarly involved!)
;
;new seed in Ra, Rb as before

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-54

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

5.16.3 Multiplication by constant using the barrel shifter

1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; ;multiply by 3
MOV Ra,Ra,LSL#1; ;and then by 2

5 Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2; ;multiply by 5
ADD Ra,Rc,Ra,LSL#1; ;multiply by 2

;and add in next digit

6 General recursive method for Rb := Ra*C, C a constant:

a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45
which is done by:

RSB Rb,Ra,Ra,LSL#2; ;multiply by 3
RSB Rb,Ra,Rb,LSL#2; ;multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; ;multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3; ;multiply by 9
ADD Rb,Rb,Rb,LSL#2; ;multiply by 5*9 = 45

5.16.4 Loading a word from an unknown alignment

;enter with address in Ra (32 bits)
;uses Rb, Rc; result in Rd.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-55

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ;get word aligned address
LDMIA Rb,{Rd,Rc} ;get 64 bits containing answer
AND Rb,Ra,#3 ;correction factor in bytes
MOVS Rb,Rb,LSL#3 ;...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ;produce bottom of result word

;(if not aligned)
RSBNE Rb,Rb,#32 ;get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb; ;combine two halves to get result

5.16.5 Loading a halfword (Little Endian)

LDR Ra, [Rb,#2] ;get halfword to bits 15:0
MOV Ra,Ra,LSL #16 ;move to top
MOV Ra,Ra,LSR #16 ;and back to bottom

;use ASR to get sign extended version

5.16.6 Loading a halfword (Big Endian)

LDR Ra, [Rb,#2] ;get halfword to bits 31:16
MOV Ra,Ra,LSR #16 ;and back to bottom

;use ASR to get sign extended version

5.16.7 Instruction speed summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle one instruction may be using the data path while the next is being
decoded and the one after that is being fetched. For this reason the following table
presents the incremental number of cycles required by an instruction, rather than the
total number of cycles for which the instruction uses part of the processor. Elapsed
time (in cycles) for a routine may be calculated from these figures which are shown in
➲Table 5-7: ARM instruction speed summary on page 5-56.

These figures assume that the instruction is actually executed.

Unexecuted instructions take one instruction fetch cycle.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-56

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

Where:

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

The time taken for:

• an internal cycle - will always be one FCLK cycle

• an instruction fetch and data read - will be FCLK if a cache hit occurs,
otherwise a full memory access is performed.

Instruction Cycle count

Data Processing - normal
 with register specified shift
 with PC written
 with register specified shift & PC written

1 instruction fetch
1 instruction fetch and 1 internal cycle
3 instruction fetches
3 instruction fetches and 1 internal cycle

MSR, MRS 1 instruction fetch

LDR - normal
 if the destination is the PC

1 instruction fetch, 1 data read and 1 internal cycle
3 instruction fetches, 1 data read and 1 internal cycle

STR 1 instruction fetch and 1 data write

LDM - normal
 if the destination is the PC

1 instruction fetch, n data reads and 1 internal cycle
3 instruction fetches, n data reads and 1 internal cycle

STM 1 instruction fetch and n data writes

SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal
cycle

B,BL 3 instruction fetches

SWI, trap 3 instruction fetches

MUL,MLA 1 instruction fetch and m internal cycles

CDP the undefined instruction trap will be taken

LDC the undefined instruction trap will be taken

STC the undefined instruction trap will be taken

MCR 1 instruction fetch and 2 internal cycles for coproc 15

MRC 1 instruction fetch and 2 internal cycles for coproc 15

 Table 5-7: ARM instruction speed summary

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-57

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

• a data write - will be FCLK if the write buffer (if enabled) has available space,
otherwise the write will be delayed until the write buffer has free space. If the
write buffer is not enabled a full memory access is always performed.

• Co-processor cycles - will be one CPCLK cycle, but see the section on Co-
processors for more informational coprocessor operations except MCR or
MRC to registers 0 to 7 on coprocessor #15 (used for internal control) will
cause the undefined instruction trap to be taken.

• memory accesses - are dealt with elsewhere in the ARM7500 datasheet.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-58

P
re

lim
in

ar
y

-
U

nr
es

tr
ic

te
d

